首页 赤峰人才网 赤峰供求网 赤峰教案网 赤峰教育网 赤峰试卷网 赤峰软件网 赤峰维修网 赤峰娱乐网
当前位置赤峰信息网 >> 赤峰教案网 >> 七年级 >> 内容阅读

人教部编版七年级下册数学《平面直角坐标系》教案免费下载

发布时间:2020-02-16 10:04:26 来源: 作者:

第七章   平面直角坐标系  

7.1 . 1 有序数对

教学目标:

  知识与技能:理解有序数对的应用意义,了解平面上确定点的常用方法

  过程与方法:培养学生用数学的意识,激发学生的学习兴趣 .

  情感态度与价值观:培养学生用数学的意识,激发学生的学习兴趣。

教学重难点:

  重点 : 有序数对及平面内确定点的方法 .

  难点 : 利用有序数对表示平面内的点 .  

教学过程

一 . 创设问题情境,引入新课  

    问题  1 :一位居民打电话给供电部门:“卫星路第 8 根电线杆的路灯坏了,”维修人员很快修好了路灯。

    问题 2 : 地质部门在某地埋下一个标志桩,上面写着“北纬 44.2 °,东经 125.7 °”。

  问题 3 : 某人买了一张 8 排 6 号的电影票,很快找到了自己的座位。

分析以上情景,他们分别利用那些数据找到位置的。

你能举出生活中利用数据表示位置的例子吗?

二、新课讲授

 1 、由学生回答以下问题:

 (1) 引入:影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置观众根据入场券上的“排数”和“号数”准确入座。

  ( 2 )根据下面这个教室的平面图你能确定某同学的坐位吗?对于下面这个根据教师平面图写的通知,你明白它的意思吗?

“今天以下座位的同学放学后参加数学问题讨论:( 1,5 ),( 2 , 4 ),( 4 , 2 ),( 3 , 3 ) ,(5,6 )。”

合作交流后得到共识 : 规定了两个数所表示的含义后就可以表示座位的位置 .

思考 :

 (1) 怎样确定教室里坐位的位置 ?

  ( 2 )排数和列数先后顺序对位置有影响吗?( 2 , 4 )和( 4 , 2 )在同一位置。

( 3 )假设我们约定“列数在前,排数在后”,你在图书 6 1-1 上标出被邀请参加讨论的同学的座位。

让学生讨论、交流后得到以下共识:

  ( 1 )可用排数和列数两个不同的数来确定位置。

  ( 2 )排数和列数先后顺序对位置有影响。( 2 , 4 )和( 4 , 2 )表示不同的位置,若约定“列数在前排数在后”则( 2 , 4 )表示第 2 列第 4 排,而( 4 , 2 )则表示第 4 列第 2 排。因而这一对数是有顺序的。

  ( 3 )让学生到黑板贴出的表格上指出讨论同学的位置。

2 、有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数 a 与 b 组成的数对,叫做有序数对 , 记作( a,b )

利用有序数对,可以很准确地表示出一个位置。

3 、 常见的确定平面上的点位置常用的方法

( 1 )以某一点为原点( 0 , 0 )将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

( 2 )以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

三、 课堂练习 :

  教材 65 页   练习

补充: 如图,马所处的位置为( 2 , 3 ) .  ( 1 )你能表示出象的位置吗?( 2 )写出马的下一步可以到达的位置。

四、课堂小结:

1 、什么要用有序数对表示点的位置,没有顺序可以吗?

2 、常用的表示点位置的方法 .

五、作业

  教材 68 页   习题 7.1  第 1 题

六、板书设计

 7.1  有序数对

 

  有序数对

七、课后反思:

 7 .1 . 2  平面直角坐标系

教学目标

  知识与技能  

 1 、能正确地画出平面直角坐标系;

 2 、在给定的平面直角坐标系中,能由点的位置写出它的坐标,并会根据坐标描出点的位置,理解坐标平面内的点与有序实数对的一一对应关系;  

 3 、明确各象限内点的坐标的符号特点,并能判断所给出的点在哪个象限 .  

过程与方法

 1 、 经历画坐标系、描点,由点找坐标的过程和图形的坐标变化与图形平移之间关系的探索过程,发展学生的形象思维能力与数形结合意识;

 2 、 通过平面直角坐标确定地理位置,提高学生解决问题的能力 .

情感、态度与价值观 :

明确数学理论来源于实践,反过来又能指导实践,数与形是可以相互转化的,进一步发展学生的辩证唯物主义思想 .

教学重、难点 :

  重点:理解平面直角坐标系的有关概念 , 能由点位置写出坐标 ,  由坐标描出点的位置 .

  难点: 理解坐标平面内的点与有序实数对的一一对应关系 .

教学过程

  一、复习导入

  数轴上的点可以用什么来表示?

可以用一个有理数来表示,我们把这个数叫做这个点的坐标 。

问题:如图,点 A 的坐标是 2 ,点 B 的坐标是- 3.

坐标为- 4 的点在数轴上的什么位置?   在点 C 处 .

这就是说,知道了数轴上一个点的坐标,这个点的位置就确定了。

二、新课 ---- 平面直角坐标系

思考: 1 、平面内的点又怎样表示呢?

  这就是我们这节课所学的 —— 平面直角坐标系(并板出课题)

 2 、什么是平面直角坐标系?

    思考 :类似于利用数轴确定直线上点的位置,能不能找到一种办法来确定平面内的点的位置呢(例如图 7.1-3 中 A 、 B 、 C 、 D 各点)?

平面直角坐标系概念:

平面内两条互相   垂直 、原点   重合 的数轴,组成平面直角坐标系 .

  水平的数轴称为横轴或 X 轴 ,习惯上取向   上 为正方向;竖直的数轴为   纵轴 或  Y 轴 ,取向   右 为正方向;两个坐标轴的交点为平面直角坐标系的   原点 。

有了平面直角坐标系,平面内的点就可以用一个 有序数对 来表示了。

三、例题 ---------- 点的坐标

如图 , 由点 A 分别向 x 轴和 y 轴作垂线,垂足 M 在 x 轴上的坐标是 3 ,垂足 N 在 y 轴上的坐标是 4 ,我们说 A 点的横坐标是 3 ,纵坐标是 4 ,有序数对 (3 , 4) 就叫做点 A 的坐标 , 记作 A(3 , 4) 。

类似地,写出点 B 、 C 、 D 的坐标 . 

  B(-3 , -4) 、 C(0 , 2) 、 D(0 , -3).

注意 :写点的坐标时,横坐标在前,纵坐标在后 。

思考 : 原点 O 的坐标是什么 ? x 轴和 y 轴上的点的坐标有什么特点?

原点 O 的坐标是 (0 , 0).

在 x 轴上的点的纵坐标为 0 ,记作( x , 0 ) .

在 y 轴上的点的横坐标为 0 ,记作( 0 , y ) .

  四个象限 ----- 建立了平面直角坐系以后 , 坐标平面就被两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、   Ⅳ四个部分 , 分别叫第一象限、第二象限、第三象限、第四象限。 坐标轴上的点不属于任何象限 。

各象限上的点有何特点 ?

  学生交流后得到共识 , 各象限坐标的符号:

  第一象限上的点,横坐标为正数,纵坐标为正数,   即(+,+)

  第二象限上的点,横坐标为负数,纵坐标为正数,   即(-,+)

  第三象限上的点,横坐标为负数,纵坐标为负数,   即(-,-)

第四象限上的点,横坐标为正数,纵坐标为负数,   即(+,-)

例   在平面直角坐标系中描出下列各点 :

 A(4 , 5) ,  B( - 2 , 3) ,  C( - 4 , - 1) ,  D(2.5 , - 2) ,  E(0 , - 4).

分析 :根据点的坐标的意义,经过 A 点作 x 轴的垂线,垂足的坐标是 A 点横坐标,作 y 轴的垂线,垂足的坐标是 A 点的纵坐标。你认为应该怎样描出点 A 的坐标?

先在 x 轴上找出表示 4 的点,再在 y 轴上找出表示 5 的点,   过这两个点分别作 x 轴和 y 轴的垂线,垂线的交点就是 A.

类似地,我们可以描出点 B 、 C 、 D 、 E.

因此,我们可以得出:对于坐标平面内任意一点 M ,都有唯一的一对有序实数对( x , y ) ( 即点 M 的坐标 ) 和它对应;反过来,对于任意一对有序实数对( x , y ),在坐标平面内都有唯一的一点 M  (即坐标为( x , y )的点)和它对应。也就是说, 坐标平面内的点与有序实数对是一一对应的 。

  探究: 如图 , 正方形 ABCD 的边长为 6.

 (1) 如果以点 A 为原点, AB 所在的直线为 x 轴,建立平面坐标系,那么 y 轴是哪条线?  y 轴是 AD 所在直线。

 (2) 写出正方形的顶点 A 、 B 、 C 、 D 的坐标 . A(0 , 0) ,  B(0 , 6) ,  C(6 , 6) ,  D(6 , 0).

 (3) 请你另建立一个平面直角坐标系,此时正方形的顶点 A 、 B 、 C 、 D 的坐标又分别是多少?与同学交流一下。

可以看到建立的直角坐标系不同,则各点的坐标也不同。你认为怎样建立直角坐标系才比较适 当?要尽量使更多的点落在坐标轴上

4、  课堂练习 :

  课本 P68  练习   第 1 题

补充: 点 A(4 , 5) 在第   象限;   点 B( - 2 , 3) 在第 ____ 象限 . ;

点 C( - 4 , - 1) 在第 ____ 象限;   点 D(2.5 , - 2) 在第 ____ 象限;

  点 E(0 , - 4). 在     ;   点 F (0 , 5) 在     。

五、课堂小结

  我们这节课学了哪些内容?

 x 轴:   ( x , 0 )

1 、数轴  

 y 轴:   ( 0 , y )

平面直角坐标系  2 、原点:( 0 , 0 )

3 、象限   第二象限   : (-,+)

第三象限   :(-,-)

第四象限   :(+,-)

  坐标平面内的点与有序实数对是一一对应的 。

6、  作业:

 P70 页   习题 7.1  第 5 题

  七、板书设计:

 7 .1 . 2  平面直角坐标系

 

    平面直角坐标系定义

八、课后反思:

7.2.1  用坐标表示地理位置

教学目标:

  知识与技能: 了解用平面直角坐标系来表示地理位置的意义及主要过程;培养学生解决实际问题的能力.

过程与方法:通过学习如何用坐标表示地理位置,发展学生的空间观念.

情感态度与价值观: 通过学习,学生能够用坐标系来描述地理位置,本节课要渗透法制知识为 《中华人民共和国气象法》,第二十二条、二十四条。  第二十二条 国家对公众气象预报和灾害性天气警报实行统一发布制度。各级气象主管机构所属的气象台站应当按照职责向社会发布公众气象预报和灾害性天气警报,并根据天气变化情况及时补充或者订正。其他任何组织或者个人不得向社会发布公众气象预报和灾害性天气警报。国务院其他有关部门和省、自治区、直辖市人民政府其他有关部门所属的气象台站,可以发布供本系统使用的专项气象预报。各级气象主管机构及其所属的气象台站应当提高公众气象预报和灾害性天气警报的准确性、及时性和服务水平。 第二十四条 各级广播、电视台站和省级人民政府指定的报纸,应当安排专门的时间或者版面,每天播发或者刊登公众气象预报或者灾害性天气警报。各级气象主管机构所属的气象台站应当保证其制作的气象预报节目的质量。广播、电视播出单位改变气象预报节目播发时间安排的,应当事先征得有关气象台站的同意;对国计民生可能产生重大影响的灾害性天气警报和补充、订正的气象预报,应当及时增播或者插播。

教学重难点:

  重点: 利用坐标表示地理位置.

  难点 :   建立适当的直角坐标系,利用平面直角坐标系解决实际问题.

教学过程

一、创设问题情境

 

思考 :图 7 . 2-1 . 

 

二、新课讲授

  探究:

根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置.

小刚家:出校门向东走 150 米,再向北走 200 米.

小强家:出校门向西走 200 米,再向北走 350 米,最后再向东走 50 米.

小敏家:出校门向南走 100 米,再向东走 300 米,最后向南走 75 米.

  问题: 如何建立平面直角坐标系呢?以何参照点为原点?如何确定 x 轴、 y 轴?如何选比例尺来绘制区域内地点分布情况平面图?

小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校位置为原点.根据描述,可以以正东方向为 x 轴,以正北方向为 y 轴建立平面直角坐标系,并取比例尺 1 : 10000 (即

由学生画出平面直角坐标系,标出学校的位置,即( 0 , 0 ).

引导学生一同完成上图.

问题: 选取学校所在位置为原点,并以正东、正北方向为 x 轴、 y 轴的正方向有什么优点?

可以很容易地写出三位同学家的位置.

归纳: 归纳利用平面直角绘制区域内一些地点分布情况平面图的过程.

经过学生讨论、交流,教师适当引导后得出结论:

( 1 )建立坐标系,选择一个适当的参照点为原点,确定 x 轴、 y 轴的正方向;

( 2 )根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;

( 3 )在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.

思考:

1 、如图,一艘船在 A 处遇险后向相距 35 n mile 位于 B 处的救生船报警.

( 1 )如何用方向和距离描述救生船相对于遇险船的位置?

( 2 )救生船接到报警后准备前往救援,如何用方向和距离描述遇险船相对于救生船的位置?

 答:( 1 )如图, AB 与正北方向所成的角是 60 º,所以救生船在遇险船北偏东 60 º的方向上;由 AB 的长就可以确定救生船相对于遇险船的位置.  

  ( 2 )反过来,由两直线平行,内错角相等得,射线 BA 与正南方向所成的角是 60 º,所以遇险船在救生船南偏西 60 º的方向上,再由 AB 的长就可以确定遇险船相对于救生船的位置.

  本题是航海遇到危险向 救生船报警 ,需要渗透 法制知识为 《中华人民共和国气象法》,第二十二条、二十四条。  第二十二条 国家对公众气象预报和灾害性天气警报实行统一发布制度。各级气象主管机构所属的气象台站应当按照职责向社会发布公众气象预报和灾害性天气警报,并根据天气变化情况及时补充或者订正。其他任何组织或者个人不得向社会发布公众气象预报和灾害性天气警报。国务院其他有关部门和省、自治区、直辖市人民政府其他有关部门所属的气象台站,可以发布供本系统使用的专项气象预报。各级气象主管机构及其所属的气象台站应当提高公众气象预报和灾害性天气警报的准确性、及时性和服务水平。 第二十四条 各级广播、电视台站和省级人民政府指定的报纸,应当安排专门的时间或者版面,每天播发或者刊登公众气象预报或者灾害性天气警报。各级气象主管机构所属的气象台站应当保证其制作的气象预报节目的质量。广播、电视播出单位改变气象预报节目播发时间安排的,应当事先征得有关气象台站的同意;对国计民生可能产生重大影响的灾害性天气警报和补充、订正的气象预报,应当及时增播或者插播。

  一般地,可以建立平面直角坐标系,用坐标表示地理位置。此外,还可以用方位角和距离表示平面内物体的位置。

三、课堂练习及小结

课本 P75  练习  1 、 2

补充:若向西走 200 米,再向北走 350 米,记为( -200 , 350 )

则向北走 350 米,再向西走 200 米,如何记?

( -200 , -350 )又表示什么意思呢?

小结:应注意的问题: 用坐标表示地理位置时,一是要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置;二是坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致;三是要注意标明比例尺和坐标轴上的单位长度.

  有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称.(举例)

四、课后作业

教材第 78 页   习题 7 . 2  第 1 , 3 , 10 题

5、  板书设计:

  7.2.1  用坐标表示地理位置

归纳:

( 1 )建立坐标系,选择一个适当的参照点为原点,确定 x 轴、 y 轴的正方向;

( 2 )根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;

( 3 )在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.

六、课后反思:

7.2.2 用坐标表示平移( 1 )

教学目标:

  知识与技能:掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;

会根据图形上点的坐标的变化,来判定图形的移动过程.  

  过程与方法:发展学生的形象思维能力,和数形结合的意识.

情感态度与价值观:用坐标表示平移体现了平面直角坐标系在数学中的应用.

教学重难点:

  重点: 掌握坐标变化与图形平移的关系.

  难点 :   利用坐标变化与图形平移的关系解决实际问题.

教学过程

一、引言

  上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用.

二、新课讲授

  探究:

  ( 1 )如图 7.2-4 将点 A (- 2 ,- 3 )向右平移 5 个单位长度,得到点 A 1 ,在图上标出它的坐标,把点 A 向上平移 4 个单位长度呢?

  ( 2 )把点 A 向左或向下平移 4 个单位长度,观察他们的变化,你能从中发现什么规律吗?

  ( 3 )再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?

规律:

  在平面直角坐标系中,将点( x , y )向右(或左)平移 a 个单位长度,可以得到对应点( x+a , y )或( x-a , y ));将点( x , y )向上(或下)平移 b 个单位长度,可以得到对应点( x , y+b )(或( x , y-b )).

归纳:

  对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.

探究:

如图 7.2-5, 将点 A(-2,-3) 向右平移 5 个单位长度 , 得到点 A1, 在图上标出这个点 , 并写出它的坐标,把点 A 向左平移 2 个单位呢 ? 把点 A 向上平移 6 个单位呢 ? 把点 A 向下平移 4 个单位呢 ?

解:

 例题: 如图( 1 ),三角形 ABC 三个顶点坐标分别是 A ( 4 , 3 ), B ( 3 , 1 ), C ( 1 , 2 ).

(1)  将三角形 ABC 三个顶点的横坐标后减去 6 ,纵坐标不变,分别得到点 A 1 、 B 1 、 C 1 ,依次连接 A 1 、 B 1 、 C 1 各点,所得三角形 A 1 B 1 C 1 与三角形 ABC 的大小、形状和位置上有什么关系?

( 2 )将三角形 ABC 三个顶点的纵坐标都减去 5 ,横坐标不变,分别得到点 A 2 、 B 2 、 C 2 ,依次连接 A 2 、 B 2 、 C 2 各点,所得三角形 A 2 B 2 C 2 与三角形 ABC 的大小、形状和位置上有什么关系?

引导学生动手操作,按要求画出图形后,解答此例题.

7.2-7

  解: 如图( 7.2-7 ),所得三角形 A 1 B 1 C 1 与三角形 ABC 的大小、形状完全相同,三角形 A 1 B 1 C 1 可以看作将三角形 ABC 向左平移 6 个单位长度得到.类似地,三角形 A 2 B 2 C 2 与三角形 ABC 的大小、形状完全相同,它可以看作将三角形 ABC 向下平移 5 个单位长度得到.

思考:

  ( 1 )如果将这个问题中“横坐标都减去 6 ”,   纵坐标都减去 5 ”相应地变为“横坐标都加 3 ”,   纵坐标都加 2 ”,分别能得出什么结论?画出所得到的图形

  ( 2 )如果将三角形 ABC 三个顶点的横坐标都减去 6 ,同时纵坐标都减去 5 ,能得出什么结论?画出所得到的图形   。(由学生动手画图并解答)

三、小结归纳:

  在平面直角坐标系中,如果把一个图形各点的横坐标都加上(或减去)一个正数 a ,相应的新图形就是把原图形向   右   (或向   左   )平移  a  个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数 a ,相应的新图形就是把原图形向   上   (或向   下   )平移  a  个单位长度。

四、练习:

  教材第 78 页练习;   习题 7 . 2 中第 2 、 6 题.

5、  作业:

  教材第 78 页   习题 7.2  第 3 、 4 题.

6、  板书设计:

7.2.2 用坐标表示平移( 1 )

  归纳:

  在平面直角坐标系中,如果把一个图形各点的横坐标都加上(或减去)一个正数 a ,相应的新图形就是把原图形向   右   (或向   左   )平移  a  个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数 a ,相应的新图形就是把原图形向   上   (或向   下   )平移  a  个单位长度。

七、课后反思:

7.2.2 用坐标表示平移( 2 )

教学目标:

  知识与技能:   进一步 掌握坐标变化与图形平移的关系;  

过程与方法:发展学生的形象思维能力,和数形结合的意识。

情感态度与价值观:培养学生用坐标变化解决实际问题.

教学重难点:

  重点: 用坐标变化解决实际问题.

  难点 :   实际问题转化为数学问题.

教学过程

一、复习提问:

  1 、在直角坐标系中如何平移一个图形?

 2 、一个三角形 ABC 三个顶点的坐标分别为( -1 , 4 )、( 2 , 3 )、( -4 , -1 )向上平移 3 个单位后三个顶点的坐标分别为   、   、   。再向右平移 4 个单位呢?

二、新课讲授

例 1 : 教材第 79 页第 5 题

  这是一所学校的平面图,建立适当的直角坐标系,并用坐标表示教学楼、图书馆、校门、实验楼、国旗杆的位置,类似的,你能用坐标表示学校各主要建筑物的位置吗?

说明: 建立坐标系时,原点选的位置不一样,则其它对应各点的坐标也不一样

 

例 2 :如图,已知 A ( -2 , -3 )、 B ( 3 , 2 )、 C ( 4 , -2 )把 x 轴向下平移一个单位,原三个点 A 、 B 、 C 的坐标依次娈为多少?再把 y 轴向左平移一个单位呢?

归纳: 把 x 轴向下平移 1 个单位就是把所有点的坐标向   平移   个单位

把 x 轴向上平移 1 个单位就是把所有点的坐标向   平移   个单位

把 y 轴向左平移 1 个单位就是把所有点的坐标向   平移   个单位

  把 y 轴向右平移 1 个单位就是把所有点的坐标向   平移   个单位

三、课堂练习:

  填空题 :

1. 如图 , 一个班级在军训中排列成 8 × 6 方队 , 行数自上而下 , 列数自左向右 , 如果用 ( 2, 3)  表示第二行第三列的位置 ,  那么第五行第六列同学的位置可以表示为 ______,(4,4) 表示 _______, 黑点处同学的位置可表示为 ________.

2. 如图三角形 COB 是由三角形 AOB 经过   某中变换后得到的图形 , 观察点 A 与点 C  的坐标之间的关系 , 如果三角形 AOB 中任意一点 M 的坐标为 (x,y),  它对应点 N  的坐标为 __________.

3. 已知点 P(a,b) 到 x 轴的距离为 2, 到 y  轴的距离为 5, 且│ a-b │ = │ a-b │ ,  则点 P 的坐标为 _________.

解答题 :

1. 如图 , 写出第 4 个点 D ,使四个点构成平行四边形

 2. 在直角坐标系中 , 依次连接点 (1,0),(1,3),(7,3),(7,0),(1,0) 和点 (0,3), (8,3),(4,5),(0,3) 两组图形共同组成了一个什么图形 ? 如果将上面各点的横坐标都加上 1, 纵坐标都减 1, 那么用同样方式连接相应各点所得的图形发生了哪些变化 ?

四、小结归纳:

  灵活用坐标变化解决实际问题

5、  作业:

  教材第 79 页   习题 7.2 9 、 10 、 11

6、  板书设计:

7.2.2 用坐标表示平移( 2 )

  例题讲解

七、课后反思:

第七章   平面直角坐标系复习

教学目的 : 

  知识与技能:回顾本章知识点 , 比较全面了解平面直角坐标系中各象限和坐标轴上的点的坐标特征 . 毛毛

  过程与方法:掌握平面直角坐标系中坐标的特点 , 能根据点的位置表示出坐标 , 能根据点的坐标描出点的位置 .

  情感态度与价值观:掌握建立适当平面直角坐标系的方法 , 能用坐标表示物体的地理位置 , 掌握坐标的变化与平移之间的关系 .

教学重难点:

  重点 :  准确地右角定出平面内的位置 .

  难点 :  平面直角坐标系的实际应用 .

教学过程

一、分析本章知识结构图

二、回顾与思考

 1. 在日常生活中 , 我们可以用有序数对来描述物体的位置 , 以教室中位置为例说明有序数对 (x,y) 和 (y,x) 是否相同以及为什么 ?

 2. 平面直角坐标系由两条互相垂直且有公共原点的数轴组成 ,  请你举例说明如何建立平面直角坐标系 , 在直角坐标平面内描出 P(2,4) 和原点位置 , 并指出 P  和原点的横坐标和纵坐标 .

 3. 平面直角坐标系的两条坐标轴将平面分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分 ,  这四个部分依次称为第一象限、第二象限、第三象限 , 请你在直角坐标平面内描出点 A( 2,1),B(-2,1),C(-2,-1),D(2,-1) 的位置 , 并说明它们所在的象限 .

 4. 平面直角坐标系具有广泛应用 , 请你举例说明它的应用 .

  由学生回顾全章内容后 , 回答以下问题 :

 (1) 让学生举实例说明有序数对是有顺序的 ,(x,y) 与 (y,x) 是不相同的 ,  若列前排后 , 则 (x,y) 表示 x 列 y 排 ,(y,x) 则表示 y 列 x 排 .

 (2)P(2,4) 的横坐标为 2, 纵坐标为 4, 原点的横坐标为 0, 纵坐标为 0.

 (3) 展示学生完成的答案  

A 在第一象限 ,B 在第二象限 ,C  在第三象限 ,D 在第四象限 .( 第一象限上的点横纵标均为正数 ,  第二象限的点横坐标为负数 , 纵坐标为正数 , 第三象限上的点横纵坐标场为负数 ,  第四象限上的点横坐标为正数 , 纵坐标为负数 ).

 (4) 可利用平面直角坐标系表示地理位置 , 可以用坐标表示图形的平移等 .

例 1 : 指出下列各点的横坐标和纵坐标 , 并指出它们所在象限 :

A(2,3),B(-2,3),C(-2,-3),D(2,-3).

  解 :A(2,3) 横坐标为 2, 纵坐标为 3, 在第一象限 .

 B(-2,3) 横坐标为 -2, 纵坐标为 3, 在第二象限 .

 C(-2,-3) 横坐标为 -2, 纵坐标为 -3, 在第三象限 .

 D(2,-3) 横坐标为 2, 纵坐标为 -3, 在第四象限 .

例 2 : 在方格纸上建立平面直角坐标系 , 并描出下列各点 :

A(1,1), B(5,1), C(3,3), D(-3,3), E(1,-2),

F(1,4), G(3,2), H(3,-2), I(-1,-1), J(-1,1).

连结 AB, CD, EF,AH,IJ, 找出它们中点的坐标 , 将上述中点的横坐标和纵坐标分别与对应线段的两个端点的横坐标和纵坐标进行比较 , 你发现它们之间有什么关系 ? 写出你的发现 ,  并与其他同学进行交流 .

解 : 如图 AB 中点坐标为 (3,1),CD 中点坐标为 (0,3),EF 中点坐标为 (-1,0),GH 中点坐标为 (3,0),IJ 中点坐标为 (-1,0) 发现 , 中点的横坐标 ( 或纵坐标 )  分别是对应线段的两个端点的横坐标 ( 或纵坐标 ) 之和的一半 .

例 3: 如图 , 三角形 PQR 是三角形 ABC 经过某种变换后得到的图形 , 分别写出点 A  与点 P, 点 B 与点 Q, 点 C 到点 R 的坐标 , 并观察它们之间的关系 . 如果三角形 ABC 中任意一点 M 的坐标为 (x,y), 那么它的对应点 N 的坐标是什么 ?

  分析 : 观察三角形 PQR 变换到△ ABC 时对应点坐标关系 , 发现对应横、纵坐标都互为相反数 , 从而得出 N 点坐标 .

  解 : A(4,3),B(3,1),P(-4,-3),Q(-3,-1), 发现两图形是关于原点对称 , 若 m(x,y), 则它的对应点 (-x,-y).

三、作业

  教科书 P84-P85.  复习题   第 1 , 2,3,4,5 题

上一篇:人教部编版七年级下册数学《实数》教案免费下载

下一篇:没有文章

责任编辑:本站编辑 | 打印 | 关闭

友情提示:赤峰信息网部分资源来源于网络,如果您觉得某些资源对您构成侵权,请立即告知,我们将在第一时间删去!

赤 峰 信 息 网  www.cfxxw.com  版权所有 蒙ICP备11001659号
  广告业务信箱:cfxxw@vip.qq.com
 赤峰信息网部分资源来源于网络,如果您觉得某些资源对您构成侵权,请立即告知,我们将在第一时间删去! 信箱:cfxxw@vip.qq.com